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Abstract 

A r a a t i o n  cooled MPD th rus t e r  was tes ted  
with the  magnetic f i e l d  supplied by a permanent 
magnet. 
a t  t he  cathode t i p .  A t  25 kW arc power the  maximum 
magnet temperature w a s  835O K. 
weight was under 1 kg/kW. The Mm) th rus te r  was al- 
so tes ted  with a superconducting magnet t o  inves t i -  
gate operation a t  varying magnetic f i e l d  strengths 
up t o  1 tes l a .  Some increase i n  power aapabi l i ty  
was obtained with increasing f i e ld .  
th rus te r  w a s  operated with argon propellant and a 
hollow cathode, arc efficiency was found t o  in -  
crease with applied magnetic f i e l d  strength. 
1 t e s l a  and 25 kW arc Rower, t he  e f f ic iency  ex- 
ceeded 30 percent at 2000 sec spec i f ic  impulse, 

The magnet provided a f i e l d  of 0.08 t e s l a  

The .total. t h rus t e r  

When this 

A t  

Introduction 

Since about 1965, the  Mm) arc thrus te r  has 
received a good deal of a t ten t ion  as a poten t ia l ly  
useful space e l ec t r i c  th rus te r .  As indicated i n  a 
Survey paper by Nerheim and Kelley, (1) ea r ly  meas- 
urements indicated the  MPD thrusljer could be quite 
e f f ic ien t .  In addition, impressive poten t ia l  ad- 
vantages were pointed out i n  the  way of system 
simplicity and r e l a t ive  freedom from cumbersone 
power conditioning equipment. (2 )  These l a t t e r  
arguments assumed the  thrus te r  magnetic f i e l d  could 
be supplied using permanent magnets o r  other low- 
weight, low-vower consumption systems. 

In the  Lewis IQ’D t h rus t e r  program, some e f f o r t  
was directed towards documenting the  a b i l i t y  of a 
thrus te r  t o  operate using permanent magnets. Per- 
manent magnet design was analyzed,(3) and the  first 
f u l l y  rad ia t ion  cooled thrus te r  was assembled 
using permanent magnets. 
cess fu l ly  operated and i s  reported on herein. 

This th rus te r  w a s  suc- 

In previous Mm) t h rus t e r  t e s t s ,  ( 4~ 5) there  
were indications t h a t  e f f ic iency  improved with in -  
creasing arc power. Also,  previous water cooled 
thrus te r  studies indicated t h a t  t he  percentage of 
arc power which was converted t o  anode heat w a s  
reduced with increasing magnetic f i e l d  strength, (6) 
This suggests t h a t  increased magnetic f i e l d  
strength would r a i se  the  arc power capabi l i ty  of a 
radiation cool,ed thruster.  We thus constructed a 
superconducting magnec thrus te r  as an a l te rna t ive  
t o  a permanent magnet which produces a r e l a t i v e l y  
low magnetic f ie ld .  The superconducting magnet 
th rus te r  was constructed by combining the  magnet 
with the  anode-cathode assembly of an Mm) th rus te r  
developed by McDonnell Douglas. (7 )  
tained with t h i s  th rus te r  a re  a l s o  reported on 
heyein. 

Results ob- 

F a c i l i t i e s  and Measurement Techniques 

A l l  experiments were performed i n  a 4.6 meter 
diameter, 19.8 meter long vacuum tank. The back- 
ground pressure was from 10-5 t o  10.4 t o r r . (8 )  
basic t h rus t  r configuration w a s  the McDonnell- 
Douglas X-7. T7) Gaseous propellant flow ra t e s  

The 

were meagured by the  use of s m a l l  jeweled, sonic 
o r i f i c i e s  calibrated f o r  flow r a t e  versus upstream 
pressure. 

Thrust measurements were made using a 
parallelogram-pendulum th rus t  stand. The e l e c t r i -  
c a l  power’for the  arc w a s  brought onto the  stand 
through coaxial electrodes i n  coaxial mercury pots. 
The power w a s  supplied by commercially available 
welding power supplies. Deflection of the  stand 
yas sensed by  a l i nea r  d i f f e ren t i a l  transformer 
w i t h  output indicated on a s t r i p  chart  recorder. 
The th rus t  stand w a s  calibrated by a weight and 
pulley arrangement which was used t o  apply known 
forces t o  the  stand. A 25-centimeter-diameter 
steel buclqet o r  “ thrus t  k i l l e r “  was mounted on a 
shaft on t h e  th rus t  stand and could be swung down 
i n  f ron t  of t he  thrus te r  t o  remove the directed 
energy of t h e  beam. The th rus t  could be measured 
by blocking %he exhaust beam momentarily with the  
th rus t  k i l l e r  and observing the  change i n  th rus t  
stand deflection. 

When t h e  sqperconducting magnet was on the  
stand, the  th rus t  k i l l e r  was not used. Thrust 
measurements were obtained by turning off the  a rc  
power +nd noting the  change i n  th rus t  stand de- 
flectJon. 
changing current i n  the  external c i r c u i t  was mini- 
mized by arrangement of the  leads. 
frequently checked by shorting the  anode t o  the  
cathode and varying the  magnetic f i e l d  strength 
and arc supply current. Th i s  t a r e  was always l e s s  
than 10 percent of t he  corresponding th rus t  meas- 
urement and w a s  repeatable within about 5 percent 
of t he  thrus t .  The polar i ty  of the  current t a r e  
was  dways such t h a t  ignoring it would r e s u l t  i n  
underestimating thrus t .  

The th rus t  t a r e  which resulted from 

This t a r e  was 

Permanent Magnet Tests 

Magnet Assembly 

To dgtermine the  f e a s i b i l i t y  of  a completely 
radiation co 1 d thruster,  a McDonnell-Douglas 
X-7 thrusterP77 was modified t o  eliminate the elec- 
tromagnet. A compound permanent magnet was assem- 
bled from small pieces of Columax 9. The assembled 
magnet had a length of 15.2 cm, inside diameter of 
2.7 cm, and an outside diameter of 11 cm. The 
magnet was held together with hose clamps Fig. (1). 

The mayimum operating temperature f o r  a per- 
manent magnet i s  its Curie temperature. However, 
t he  maximum useful temperature i s  somewhat lower 
than the  Curie temperature since the  res idua l  m a g -  
ne t i c  f i e l d  is a gradual function of tempesa- 
ture.(9) 
the  magnets may change i f  held at high temperature 
f o r  long periods of time. In the  Alnico and 
Columax ser ies ,  the  maximum temperature which does 
ngt cause a s t ruc tu ra l  change i s  883 K.(9) 
t h i s  temperature there is  approximately a 1 2  per- 
cent revers ib le  l o s s  i n  the room temperature mag-  
ne t ic  f i e ld .  Therefore, the  upper l i m i t  f o r  the  
magnet was s e t  a t  823 K. 

In  addition, the  c rys t a l  s t ruc ture  of 

A t  
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During t h e  assembly of t h e  thruster,  two 
thermocouples were placed on t h e  magnet. They.are 
marked A and B i n  Fig. 2. 
of t he  magnet 1.9 em from t he  centerline.  B i s  on 
the  in t e rna l  w a l l  of t h e  magnet midway between the  
magnet ends. Both thermocouples a re  between the  
magnet surface and the  thermal insulation adjacent 
t o  the  mqnet  (Fig. 2). 
were chosen i n  the  region of maximum heat f l u x  
from the  anode and. cathode. The i n i t i a l  magnetic 
f i e l d  was  0.080 t e s l a  a t  the  cathode t i p .  A l -  
though the  magnet was  not designed f o r  optimum 
weight, t he  t o t a l  th rus te r  weight including magnet 
w a s  only 18.1 kg. 

A i s  on the  f ron t  face  

The thermocouple locations 

I n i t i a l  Tests of Permanent Magnet Thruster 

The permanent magnet t h rus t e r  was ope raed  
on m o n i a  propellant. During i n i t i a l  t e s t s ,  t he  
arc power w a s  varied from 12 t o  20 kW. Even a t  
1 2  kW, however, the  temperature d is t r ibu t ion  i n  
the  magnet w a s  not acceptable. 
of operation, the  temperature a t  point B was  630 K 
and r i s ing  slowly. The temperature a t  point p, 
however, was 955 K and r i s i n g  slowly. The 
t w u s t e r  w a s  shut off because of excessive tem- 
perature a t  point A. 

After some hours 

The long thermal delay time i n  the  i n i t i a l  
runs indicated t h a t  t he  thermal insulation of  t he  
magnet was probably adequate. However, t he  comr 
pound magnet apparently could not properly conduct 
heat from the  en t ry  region t o  the  outer surface 
from which it would be radiated. To overcome t h i s  
d i f f icu l ty ,  a copper “can“ o r  heat d i s t r ibu t ion  
surface w a s  added t o  the  magnet assembly as shown 
i n  Figs. 4 and 2. It consisted of a c i rcu lar  
copper p l a t e  0.635 cm th ick  and 11.4 CUI i n  diam- 
e t e r  welded, a t  the outer edge, t o  a cylinder 
0.318 cm th i ck  and 5.08 cm wide. This can was 
plaued over t h e  f ront  end of t he  magnet as shown 
i n  Fig. 2. The thermocouple a t  point A w a s  now 
between the  copper can and the  magnet. 
assembling the  magnet, copper can, and thrus te r ,  
the  magqetic f i e l d  a t  t he  cathode t i p  was 0.053 
tesla. 

F ina l  Tests of Permanent Magnet Thruster 

After r e -  

The tes t  runs performed a f t e r  the  addition of 
the copper sh ie ld  c l ea r ly  show a reduction i n  the  
operating temperature of the  magnet. 
shows the  steady s t a t e  temperature of point A f o r  
various values of arc power. A t  27 kW, the  high- 
est power tested,  the  temperature was 835 K, which 
was about the  maximum allowed steady state tem- 
perature. T t  w a s  noted t h a t  approximately 4 hours 
were required f o r  the  magnet and thrus te r  t o  reach 
equilibrium temperature. 

Table 1 

After t he  thermal t e s t s ,  t he  magnetic f i e l d  at 
the  cathode t i p  was  unchanged remaining at 0.053 
tes la .  The %muster  was then disassembled, t he  
qagnet remagnitized, and the  thrus te r  reassembleq. 
This raised the  magnetic f i e l d  at the  cathode t i p  
t o  0.0035 Desla. A performance t e s t  of the  
thrus te r  was made a t  t h i s  increased magnetic f i e l d  
and the  r e s u l t s  are shown i n  Fig, 3. The arc 
power was held constant at 24 kW and the  amonia 
mass flow r a t e  varied from 0.02 t o  0.08 gm/sec. 
Also shown is a performance curve f o r  the  same 
thrus te r  operated at 25 kW arc power and 0.14 
t e s l a  magnetic f i e l d  strength provided by a water 

2 

cooled electromagnet. 
from Fig. 10 of an e a r l i e r  paper. (4). 
yet determined whether t h e  degraded performance 
obtained with the  permanent magnet th rus te r  w a s  
due t o  the  r e l a t i v e l y  low magnetic f i e ld .  
possible reasons f o r  t he  difference i n  performance 
are : 

net  d id .not  decrease as rap id ly  with ax ia l  d i s -  
tance as t h a t  produced by the  water cooled magnet. 

The latter curve is taken 
We have not 

Other 

(1) The f i e l d  produced by t h e  permanent mag- 

( 2 )  The cathode and insu la tor  ran hot te r  on 
the  permanent magnet thruster.  

(3) Thruster components were badly deterio- 
rated by the  time the  performance measurements 
were taken. 

’ Superconducting Magnet T e s t s  

In previous MPD th rus t e r  experiments, 
th rus te r  performance was studied over a l imited 
range af  magnetic f i e l d  strength.(6) No depend- 
ence on magnetic f i e l d  was found f o r  overa l l  arc 
efficiency a t  constant arc power and m a s s  flow 
rate. It w a s  found, however, t h a t  anode e f f i -  
ciency improved with increasing magnetic f i e ld .  (6) 
The f rac t ion  of arc power which ended up as anode 
heat decreased somewhat with increasing applied 
f i e l d  strength. Since anode heat f l ux  l i m i t s  the  
axc power of a rad ia t ion  cooled thruster,  it was 
f e l t  that power capabi l i ty  might be extended by 
the  use of much higher applied magnetic f i e ld .  
The motivation f o r  extending power capabi l i ty  is 
pa r t ly  i l l u s t r a t e d  by Fig. 4. Efficiency is 
plotted as a function of arc power f o r  two d i f f e r -  
ent values of spec i f ic  impulse and two d i f f e ren t  
thrusters.  The water cooled thrus te r  da ta  are 
obtained from previous measurements on the  Avco 
X-2A. (6,10>1L) 
are obtained from previous measurements on the  
McDonnell Douglas X-7. ( 7, 4). 
increased e f f ic iency  with increasing arc power. 
The poten t ia l  e f f ic iency  of t he  radiation cooled 
thrus te r  c l ea r ly  suf fers  from i ts  limited arc 
power capabili ty.  

The rad ia t ion  cooled thrus te r  da t a  

Both thrus te rs  show 

Superconducting magnet t e s t s  were performed 
using the  configuration of Fig. 5 and ammonia 
propellant. A superconducting magnet w a s  in- 
s t a l l ed  on the  anode-cathode assembly of a 
McDonnell-Douglas X-7 radiation cooled thrus te r .  
The magnet was  protected from the  high tempera- 
tu res  on t h e  thrus te r  by a water cooled copper 
plate.  A platinum iridium thermocouple w a s  in- 
s t a l l ed  i n  contact with the anode surface a t  the  
point indicated i p  Fig. 5. The e f f ec t  of magnetic 
f i e l d  on thrus te r  power capabi l i ty  is shown i n  
Fig. 6. The arc: power w a s  s e t  near 25 kW a t  a 
normal operating magnetic f i e l d  of 0.13 t e s l a  a t  
the  cathode t i p .  After t he  th rus t e r  had come t o  
thermal equilibrium, the  thermocouple reading w a s  
noted. The magnetic f i e l d  w a s  then increased i n  
steps t o  1 tes l a .  
the  a rc  power was adjusted t o  the  value which 
produced t h e  previously noted equilibrium tem- 
perature reading. This, hopefully, was indicative 
of approximately constant heat f l ux  t o  the  anode. 
The indicated improvement i n  power capabi l i ty  
with an order of magnitude increase i n  magnetic 
f i e l d  was disappointingly s m a l l .  
ments were not obtained fo r  t h i s  configuration. 

A t  each magnetic f i e l d  se t t ing ,  

Thrust measure- 



Hollow Cathode Tests 

In  addition t o  the  above t e s t  performed with 
a so l id  conical cathode (Fig. 7(a)), the  supercon- 
ducting magnet t h rus t e r  w a s  a l so  investi8ated with 
a hollow cathode. The hollow cathode w a s  designed 
and Sabricated by McDonnell-Douglas and i s  shown 
i n  Fig. 7(b). Initial t e s t s  with t h i s  cathode 
were performed on argon propellant, since there  
were s t a b i l i t y  d i f f i c u l t i e s  with M3. 
high values of th rus t  observed, t he  performance of 
t h i s  combination was systematically studied over 
a range of magnetic f i e ld .  The r e su l t s  a re  shown 
i n  Fig. 8. 

Due t o  the  

Unlike previous thrus te rs  tested,  t h e  per- 
formance of t h i s  th rus te r  has a strong dependence 
on magnetic f i e l d  strength. A t  a given spec i f ic  
impulse, t he  efficiency increased with increasing 
f i e ld  strength. A t  1 tes la ,  the  highest f i e l d  
tested,  t he  arc efficiency exceeded 30 percent at 
2000 seconds spec i f ic  impulse. The da ta  indicate 
tha t  the  improvement i n  performance with increased 
magnetic f i e l d  up t o  1 t e s l a  was not leveling o f f .  
Increasing the  magnetic f i e l d  above 1 t e s l a  would 
presumably r e s u l t  i n  even higher performance. 

In t h i s  experiment, t h r u s t  measurement$ were 
obtained with great d i f f i cu l ty .  The weight of  t he  
superconducting magnet th rus te r  plus th rus t  k i l l e r  
exceeded the  capacity of our stand. Consequently, 
th rus t  measurements were made without the  a id  qf  
the  thrus t  k i l l e r  by the  method previously de- 
scribed. In addition, t he  superconducting magnet 
requires t h a t  l a rge  vent and f i l l  l i nes  be brought 
onto the  stand. This fur ther  compromised the  
qua l i ty  of our t h rus t  measurements. 
a l l  these d i f f i cu l t i e s ,  there  was a f a i r l y  la rge  
spread i n  the  data. Figure 9 shows a l l  t he  th rus t  
da ta  obtained a t  1 tes l a ,  the  highest magnetic 
f i e l d  strength studied. The da ta  was obtained by 
holding the  a m  power approximately constant near 
25 kW and varying the  mass flow ra te .  The th rus t  
w a s  not comected f o r  current t a r e  since the  ind i -  
cated corrections were the  same order as the  
sca t te r  i n  the  th rus t  measurements. Applying the  
current t a r e  would s l i g h t l y  increase the  quoted 
thrust .  

Because of 

Concluding Remarks 

A completely radiation cooled MPD th rus te r  
was operated using a permanent magnet. 
nzal problems were found t o  be qui te  manageable in-  
dicating the  f e a s i b i l i t y  of a radiation cooled MPD 
thruster.  However, t he  performance of the  same 
thrus te r  w a s  somewhat higher when it uses the  
higher magnetic f i e l d  produced by a water cooled 
magnet. 
1 kg/kW. 

The ther -  

The total. th rus te r  weight was under 

A rad ia t ion  cooled MPD thrus te r  was  operated 
with a superconducting magnet t o  see whether in- 
creased magnetic f i e l d  would improve arc power 
capability. 
an order of magnitude increase i n  f i e l d  strength 
was found t o  be quite modest. 

The increase i n  power capabi l i ty  f o r  

The same thruster-superconducting magnet sys- 
tem was operated with a hollow cathode and argon 
propellant. The performance of t h i s  combination 
improved dramatically with increasing magnetic 
f i e l d  strength. A t  2 5  kW arc power the  efficiency 

exceeded 30 percent a t  2000 sec spec i f ic  impulse. 
There appears t o  be a poss ib i l i t y  of even fur ther  
increase i n  the  efficiency of this thrus te r  by 
using even higher magnetic f i e l d  strength. We 
have not yet considered, however, whether the  
weight and complexity of a superconducting magnet 
system can be to le ra ted  i n  thls type of space pro- 
pulsion device. 
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Arc power, Maximum magnet 

(OK) (point A) 
kW temperature, 

16.0 750 
20.0 775 
23.5 800 
27.0 835 

Table 1 
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Figure 1. - Permanent magnet thruster  wi th  copper can  installed. 
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Figure 2. - Permanent magnet th rus ter  wi th  copper can installed. 
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Figure 3. - Comparison of t h r u s t  efficiency 
as a funct ion of specific impulse for a 
permanent magnet th rus ter  and electro- 
magnet thruster .  
A. Water cooled electromagnet, arc  power = 

B. Permanent magnet, arc power = 24 kW, 
25 kW, B = 0.14 tesla. 

B = 0.0635 tesla. 
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Figure 4. -Trend of MPD thruster efficiency as a function 
of arc power. 
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Figure 5. - Superconducting magnet thruster. 
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Figure 6. - Arc power as a funct ion of cathode tip magnetic 
field strength at constant anode temperature. 
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Figure 7. - Radiation cooled cathode-insulator assemblies. 
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Figure 8. - Performance of superconducting 
magnet thruster with hollow cathode and 
argon propellant. 
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Figure 9. - Thrust to power ratio as  a function of propellant 
mass flow for a hollow cathode thruster with argon propel- 
lant. Magnetic field = 1 tesla, arc power = 25 kW. 
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